
Chapter 3: Numerical simulation of deformability cytometry -
transport of a biological cell through a microfluidic channel

Lucas Daniel Wittwera,b, Felix Reichelb, Sebastian Alanda,c

aHTW Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
bMPL & MPZPM Erlangen, Staudtstrasse 2, 91058 Erlangen, Germany

cTU Bergakademie Freiberg, Akademiestrasse 6, 09599 Freiberg, Germany

Contents

3.1 Introduction 3

3.2 Modelling Biological Cells in an RT-DC Channel 6

3.3 Hydrodynamic Stresses on the Cell Surface 11

3.4 Cell Shapes and Cell Deformation 15

3.5 Extraction of the Cell Viscosity 22

3.6 Approximation Error of the Cell Volume over the Channel 25

3.7 Conclusions 27

Appendix 3A Derivation of the Deformation Measure from Cell Contours 28

Preprint submitted to Elsevier June 29, 2021



Abstract

Deformability cytometry is an important technique for label-free morphology-based characterisa-

tion of large biological cell populations by physical properties. Numerical simulations are needed

to extract mechanical properties of the measured cells which deform due to the hydrodynamic

stress. Here, we look at Real-Time Deformability-Cytometry (RT-DC) and extend the existing

numerical models to take into account the correct three-dimensional geometry of the microflu-

idic chip as well as the time-dependent viscoelastic behaviour. To this extent, the correct inflow

and outflow of the narrow channel are considered and we solve the full bi-directional interaction

between the non-Newtonian fluid of the extra-cellular medium and the viscoelastic cell. The find-

ings are compared to the results of previous works that assume axisymmetric flow and the limits

of this approximation are discussed. We then analyse the stresses acting on the cell surface as

well as the resulting deformations of the cell and explore the effect of higher cell viscosities on

the deformation at the outflow. Finally, we propose an improved methodology to extract cytoplas-

mic viscosity based on experimentally observable shape relaxation inside the channel. Our results

explain discrepancies in current viscosity extraction from experimental measurements. With this

most complete numerical description of RT-DC, to date, we pave the way for the full viscoelastic

characterisation of biological cells in high throughput experiments.

Keywords: microfluidics, RT-DC, Kelvin-Voigt material, fluid-solid-interaction, finite-element

method
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3.1. Introduction

Cell mechanical properties are important label-free biomarkers that characterise and phenotype

cell populations. For example, cell stiffness and deformability are intrinsic quantities determined

predominantly by the cytoskeleton and alterations thereof (Pegoraro et al., 2017; Fletcher and

Mullins, 2010). Based on internal changes in cell organisation, the cellular state (e.g. cell-cycle

(Otto et al., 2015; Chan et al., 2015) or differentiation (Urbanska et al., 2017; Darling et al.,

2008; Ekpenyong et al., 2012)), function (e.g. immunoreaction (Vicente-Manzanares and Sánchez-

Madrid, 2004)) and dysfunction (e.g. cancer malignancy (Guck et al., 2005)) can be identified

without labelling bio-markers by e.g. fluorescence dyes.

Traditional single-cell methods to probe cell mechanical properties include micropipette as-

piration (Hochmuth, 2000), atomic force microscopy (AFM) (Binnig et al., 1986; Radmacher,

2007) and optical stretching (Guck et al., 2000, 2001); the measurement rates of these meth-

ods are limited to a few hundred cells per hour only (Wu et al., 2018). Recent developments in

microfluidic-based high-throughput deformability cytometry enable measurements of large num-

bers of suspended cells in order to analyse whole cell populations (Urbanska et al., 2020). Real-

Time Deformability-Cytometry (RT-DC), is such a microfluidic-based technique that is capable

of measurement rates up to thousand cells per second (Otto et al., 2015). This technique allows

researchers to characterise homogeneous cell populations and also to detect rare cell types that

can occur in a medium comprising a heterogeneous cell population, for example blood (Toepfner

et al., 2018). In RT-DC cells are flushed through a narrow channel within a microfluidic chip and

they deform due to the hydrodynamic stresses. A high-speed camera takes images of the cells

at the end of a narrow channel where the cells reach a stationary deformation. Morphological

features (e.g. size or deformability) are determined from these images and the apparent Young’s

modulus (Mietke et al., 2015; Mokbel et al., 2017) and other statistics can be obtained (Herbig

et al., 2018). Several extensions to RT-DC include the addition of fluorescence for biochemical

marker identification (RT-FDC) (Rosendahl et al., 2018), deep-learning based feature extraction

(Kräter et al., 2021) and active sorting capabilities (Nawaz et al., 2020). These make RT-DC an

even more versatile tool for cell mechanics research and medical diagnostics. Recently, Fregin
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et al. (2019) introduced dynamic RT-DC (dRT-DC) which extends RT-DC to determine not only

cell stiffness, but also the apparent viscoelastic behaviour of the cell by taking several images

through the channel.

Eukaryotic cells are composed of a multitude of components that contribute to the mechanical

properties of the cell. For example, the cell cortex is a thin active pre-stressed polymer network

mainly consisting of actin and myosin (Fischer-Friedrich et al., 2016). The molecular configura-

tion of this polymer network can adapt to internal and external stresses, resulting in a frequency-

dependent stress-strain response. On the other hand, the cytosol within the cell is a fluid like

material surrounding the nucleus and different organelles which in turn have varying mechanical

properties. Depending on the considered time- and length-scale and applied forces, cells have

been observed to behave in a manner that could be characterized as elastic, viscoelatic, viscous,

or even plastic (Pegoraro et al., 2017; Nawaz et al., 2012; Mokbel et al., 2020; Fischer-Friedrich

et al., 2016; Dupire et al., 2020; Bonakdar et al., 2016; Taubenberger et al., 2020). Therefore, the

reported values of the cell mechanical properties, like apparent elasticity and viscosity, vary in

several orders of magnitude based on the measurement techniques used (Wu et al., 2018).

Numerical simulations are an important tool to understand the complex, time-dependent re-

sponse of cells under different loading conditions and to validate theoretical models of cell me-

chanics. Depending on the time- and length- scales taken into account, different mathematical and

numerical models for single-cell behaviour have been proposed (Lim et al., 2006; Rajagopal et al.,

2018). Here, we focus on continuum models. A linear elastic bulk material model has been used to

simulate AFM measurements (Rheinlaender et al., 2020) or the stationary deformation in an RT-

DC channel (Mokbel et al., 2017). For large strain bulk simulations, geometrical non-linearities

in the underlying mathematical description need to be taken into account. Hyperelastic material

models, like the neo-Hookean or Mooney-Rivlin material, have been applied to AFM measure-

ment simulations and to cells-in-flow setups (Müller et al., 2021; Schuster and Marti, 2021). The

effect of the cell cortex on the stationary deformation in an RT-DC channel has been investigated

in Mokbel et al. (2017). These authors used a linear elastic shell model with surface tension to

represent the cortex and a Newtonian fluid for the cytosol. The influence of the cell nucleus, the

cell cytoskeleton and the cell cortex under creeping flow has been investigated in Serrano-Alcalde
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et al. (2017) with a model that uses a hyperelastic neo-Hookean bulk composite with a linear

elastic shell. However, none of these models include time-dependent behaviour.

In this chapter, a fully three dimensional transient model of the dynamics of a cell passing

through an RT-DC channel is developed. We extend the numerical model of Fregin et al. (2019)

to take into account the deformed cell geometry and the fully coupled bi-directional loading on

the cell surface. Instead of a linear elastic material like in Mokbel et al. (2017), we model the cell

as an incompressible neo-Hookean Kelvin-Voigt material because the cells undergo large strains

at the inflow and outflow of the narrow channel. We analyse the time-dependent response similar

to the work from Schuster and Marti (2021) which used an axisymmetric approximation of the

channel geometry. Taking into account the correct square channel geometry of the experimental

setup, the model developed in this chapter is the first to predict the transient mechanical behaviour

of cells in realistic RT-DC experiments. We use the model to successively analyse the fluid flow,

the stress distribution on the cell surface and the evolution of cell deformation. We provide a con-

nection to experimentally measurable parameters and illustrate a pathway to extract viscoelastic

cell parameters from time-dependent RT-DC measurements.
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Figure 3.1: 2D Schematic of the Simulation Domain: (left) Full microfluidic chip Ω with the sample inlet Γi and
the two sheath flow inlets Γs and the outlet Γo. The region of interest (ROI) is indicated in darker shade. (right)
Magnification of the ROI. The flow profile computed in Ω is set as Dirichlet boundary condition on Γ f . Ω f is split into
two fluid sub-domains Ω f ,0 and Ω f ,1, each discretised separately. The cell Ωc is separated by the interface Γc from the
surrounding fluid. The origin of the coordinate system is at the inlet into the narrow channel as indicated. The z-axis
is normal to the shown schematic. The horizontal dashed line indicates the first symmetry axis.

3.2. Modelling Biological Cells in an RT-DC Channel

The geometric scale of the RT-DC chip with the sample and sheath flow inlet and outlet is on

the order of millimetres (see Fig. 3.1). On the other hand, the narrow region where the actual

measurements are performed is characterised by length scales that are 1-2 orders of magnitude

smaller (tens to hundreds of µm). The cells have a diameter of only a few micrometers and the

passage time is a few milliseconds, rendering the problem at hand multi-scale in time and space.

Here, we are interested in the cell behaviour between the inflow into the narrow channel and the

outflow. In the discussion that follows, the corresponding section of the RT-DC channel is referred

to as the region of interest or ROI for short (see Fig. 3.1).

In the method presented here, the computational analysis is split into the following three steps.

First the correct fluid profile is evaluated in the full microfluidic chip Ω in the absence of cells.

In the second step, the method evaluates the coupled fluid-solid interaction between the fluid and

the cells at the inlet and within the narrow channel of the ROI. In this step, the flow profile of the

previous step is used as boundary condition at the outer boundary Γ f of the domain Ω f . In the

third step, we model the cell behaviour at the outlet of the ROI separately as explained later.

The three dimensional computational domain of the ROI is split into the fluid domain Ω f and

the subdomain representing the cell Ωc. The interface between the fluid and solid is denoted
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by Γc. In the spatial discretisation, the fluid domain Ω f is split into two separate components:

(i) a straight rectangular domain Ω f ,0 enclosing the cell and (ii) the remaining fluid region Ω f ,1,

with Ω f = Ω f ,0 ∩ Ω f ,1 Only the mesh of Ω f ,0 will change according to the cell movement and

deformation.

3.2.1. The Measurement Buffer as a non-Newtonian Fluid

Measurement buffers used in RT-DC and similar high-throughput microfluidics devices exhibit

non-Newtonian rheology (Herold, 2017). Therefore, we model the fluid in Ω and Ω f by the in-

compressible Navier-Stokes equations with a shear rate dependent viscosity,

ρ f
∂u
∂t

+ ρ f (u · ∇) u = ∇ · σ f in Ωf, (3.1)

σ f =
(
−pI + η f (u)(∇u + (∇uT ))

)
in Ωf, (3.2)

∇ · u = 0 in Ωf, (3.3)

where ρ f ∈ R is the fluid density, u the fluid velocity, p the pressure, I ∈ R3x3 the identity matrix

and η f (u) the shear rate dependent viscosity. It is typically assumed that inertial forces have a

negligible influence for hydrodynamics at such small length scales due to the small Reynolds

number (Mietke et al. (2015)) and it has been shown that under conditions associated with RT-DC

flows, the inertial terms have only a mild influence on cell deformation (Mokbel et al., 2017).

However, because we include shear-thinning, it is possible that the Reynolds number can locally

increase significantly. Thus, to keep the results highly accurate, we include the inertial terms and

solve the full Equations (3.1) to (3.3).

The fluid shear-rate dependent behaviour can be described by a power-law non-Newtonian

fluid (Herold, 2017). This amounts to the velocity-dependent viscosity

η f (u) = m (γ̇(u))n−1 in Ω f , (3.4)

where m ∈ R is the fluid consistency coefficient, γ̇(u) =
√

max(2S(u) : S(u), 0.001) is the bounded

shear rate and n ∈ R the flow behaviour index. The strain rate tensor is given by S(u) =

1
2

(
∇u +

(
∇uT

))
.
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3.2.2. The Cell as a Viscoelastic Solid Material

We model the cell as a Kelvin-Voigt material where the elastic branch is assumed to be an incom-

pressible hyperelastic neo-Hookean solid:

ρs
∂2w
∂t2 = ∇ · (σc)T in Ωc, (3.5)

σc = FS tot in Ωc, (3.6)

where w is the displacement vector, F = ∂x
∂X = ∇w + I is the deformation gradient and S tot is the

total stress. In the case of a Kelvin-Voigt material, the total stress S tot is given by

S tot = S + τṠ iso, (3.7)

where S = ∂Ws
∂ε

is the second Piola-Kirchhoff stress, τ = ηc/E the relaxation time of the viscous

branch and Ṡ iso the time derivative of the isochoric part of the stress. The cell’s viscosity ηc and

the Young’s modulus E are material parameters. The Green-Lagrange strain ε is given by

ε =
1
2

(
FT F − I

)
. (3.8)

The elastic strain energy density Ws of the neo-Hookean hyperelastic material is

Ws =
1
2
µ
(
Ī1 − 3

)
+

1
2
κ (Jel − 1)2 , (3.9)

which is the sum of the isochoric strain energy density (using the isochoric invariant Ī1) and the

volumetric strain energy density (using the elastic volumetric deformation Jel). In the case of

an incompressible material with the Young’s modulus E and Poisson ratio ν = 0.5, the material

parameters are given by the Lamé parameter µ = E
2(1+ν) ∈ R and the bulk modulus κ ∈ R.

3.2.3. Boundary Conditions and Fluid-Solid Coupling

The Navier-Stokes Equations (3.1) to (3.3) are solved in the full chip geometry (Fig. 3.1 left) in

the absence of a cell first to get the correct inflow profile for the sub-model of the ROI (Fig. 3.1

right). On the channel wall we enforce no-slip conditions on the velocity field by

u = 0. (3.10)
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On the chip inlets we set the velocity field according to the experimental setup and we fix the

pressure at the outlet by:

u = us on Γs, (3.11)

u = ui on Γi, (3.12)

p = 0 on Γo, (3.13)

where us and ui are the inflow velocity profiles at the sheath and sample inlet. The resulting flow

profile is then set as boundary condition at the inflow and outflow Γ f of the sub-model of the ROI.

We monotonically increase the inflow velocity in the first few time steps from zero to the correct

velocity profile for stability reasons.

On the interface Γc, we impose the kinematic condition (continuity of velocities) and dynamic

condition (balance of forces) by

u = ∂tw on Γc, (3.14)

n · σ f = n · σc on Γc, (3.15)

where n is a normal vector to the fluid-solid interface and σ f and σc are the internal stresses of the

fluid and the solid, respectively.

3.2.4. Finite-Element Implementation

The resulting system of equations is discretised by the Finite-Element method using COMSOL

Multiphysics R©. Symmetry along the y-z and x-z planes can be used to reduce the computational

domain fourfold as indicated in Fig. 3.1 resulting in the computational domains shown in Fig. 3.2.

Normal to the planes of symmetry the fluid is subjected to the Dirichlet boundary condition:

u · n = 0 (3.16)

and similar no-displacement condition of the cell in Ωc by

w · n = 0, (3.17)

where n is the normal to the plane of symmetry.
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The geometry of the sub-model is discretised with two independent but adjacent meshes for

Ω f ,0 and Ω f ,1. The mesh of Ω f ,1 stays fixed throughout the whole simulation. Only the mesh

discretising Ω f ,0, Ωc and Γc changes with the cell movement and deformation. On the interface

between Ω f ,0 and Ω f ,1 we enforce a flow continuity by u0 = u1 (equal flow field) and p0 = p1 (equal

pressure) where the subscript indicates the two subdomains again. Remeshing did not lead to stable

simulations in 3D. Thus, we use an arbitrary Lagrangian-Eulerian (ALE) approach to allow cell

movement through the whole narrow channel. The grid movement on Γc is smoothly extended into

the interior of the domain. To keep the mesh quality high while reducing the degrees of freedom,

we discretise the sub-domain Ω f ,0 with a combination of prisms and pyramid elements (away from

the cell) and tetrahedral elements (around and within the cell). On the fluid-solid interface and the

channel wall we added boundary layers to resolve the high gradient in the flow field as well as

to better approximate the normal stress component acting on the cell surface. Fig. 3.2 shows an

exemplary mesh which was coarsened for illustrative purposes.

To increase the numerical stability we choose linear Lagrange shape functions for the veloc-

ity and the pressure field with streamline and crosswind diffusion stabilisation. The hyperelastic

cell material is solved with linear shape functions. The fully bi-directional coupled geometrical

non-linear system is solved monolithically with a Newton-method in time and the direct solver

PARDISO in space in COMSOL Multiphysics R©.

Previous works on RT-DC simulations approximate the channel geometry as rotationally sym-

metric around the x-axis to effectively reduce the computational model to two dimensions. In this

case, the channel width is scaled such that the pressure drop over the axisymmetric cylindrical

channel is the same as it would be in the real square channel geometry (see the concept of the

equivalent channel radius in Mietke et al. (2015) and Mokbel et al. (2017)). While the assumption

of axisymmetric geometry might be a good approximation within the narrow channel, it is doubt-

ful along the inflow and outflow regions of the ROI because these would assume unrealistic funnel

shapes. Here, we resolve the full 3D geometry of real RT-DC channels. To quantify the error

induced by the assumption of axisymmetry, we perform additional 2D axisymmetric simulations.

Therefore, we use the concept of the equivalent channel radius and set the inflow to a normal flow

profile that results in the same flow rate as for the full three-dimensional simulations.
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Figure 3.2: Reduced Computational Domains of the ROI and Streamlines: Three parts of the ROI are shown:
(left) Inflow into the narrow channel. The two disjoint domains Ω f ,0 and Ω f ,1 (see Fig. 3.1) and the barrow containing
the cell domain with different element types are shown. The mesh was coarsened for illustrative purposes. The
colouring of the cell surface indicates the shear stress. (middle top) Stationary deformation at the end of the narrow
channel. Streamlines indicate the flow profile relative to the cell motion, coloured by the flow magnitude. (right)
Outlet from the narrow region.

3.3. Hydrodynamic Stresses on the Cell Surface

In this section we present the first numerical results of a viscoelastic cell traversing a typical RT-

DC channel. We successively analyse the fluid flow, corresponding stress distribution on the cell

surface, and the resulting evolution of cell deformation.

3.3.1. Fluid Flow in the Microfluidic Chip

To get the correct inflow profile for the sub-model of the ROI, we solve the incompressible Navier-

Stokes Equations (3.1) to (3.3) in the full microfluidic chip, taking into account the shear-thinning

behaviour of the fluid medium. The fluid is characterised by a density of ρ f = 1000 kg m−3, a fluid

consistency coefficient of m = 0.4057 Pa s and a flow behaviour index of n = 0.6039 as described

in Equation (3.4). The fluid parameters were measured with an Anton Paar MCR 502 WESP

Twindrive rheometer using a 0.3◦ cone-plate geometry in a shear rate range of [5000,50000]s−1.

Fig. 3.3 on the top shows the velocity magnitude and stream lines for a typical RT-DC ex-

perimental setup: a sample flow rate of 0.01 µl s−1 at Γi and a sheath flow rate of 0.015 µl s−1 is

prescribed on both parts of Γs, resulting in a total flow rate of 0.04 µl s−1 at the inlets. The pressure
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Figure 3.3: Fluid Flow in the RT-DC Chip: (top centre): streamlines and the velocity magnitude of the full mi-
crofluidic chip. (bottom) Horizontal slice through the ROI at z = 0 µm. The channel length is shortened to 100 µm
for demonstration purposes. Upper half: streamlines and velocity magnitude. Lower half: pressure field and isobars
along the narrow channel. The pressure is scaled such that it is zero in the centre of the channel at x = 50 µm.

is fixed at the centre of the narrow channel to p = 0 Pa.

The apparent viscosity of the shear-thinning fluid was inferred to be 6 mPa s in a 20 µm wide

RT-DC chip at a flow rate of 0.04 µl s−1 based on the derivation of Herold (2017). This is less than

half of the 15 mPa s used in (Mietke et al., 2015; Mokbel et al., 2017). The resulting velocity profile

at the boundary to the ROI is used as a boundary condition at the inflow and outflow boundaries

of the ROI in the forthcoming simulations.

Fig. 3.3 (bottom) shows a close-up of the ROI. The above fluid parameters and flow rate result

in a maximum velocity magnitude of 0.184 m s−1 in the centre of the channel. This setup is used

for all the following simulations.

3.3.2. Deformed Cells in the Region of Interest

Based on the correct inflow profiles computed in the full microfluidic channel, we simulate cel-

lular transport as a bi-directional fluid-solid interaction system in the sub-model of the ROI. The

incompressible cells with typical radii of r ∈ [3, 5, 7]µm, a bulk modulus of κ = 2.15 GPa, and

density ρc = 1000 kg m−3, start as an undeformed stationary sphere at x = −80 µm. Due to the sur-

rounding fluid, cells accelerate, are flushed through the channel and deform based on the complex

loading of the hydrodynamic stress. At the same time, the cells alter the fluid flow in their vicinity.

Fig. 3.4 shows the cell shape and the three-dimensional loading on the cell surface as a single

cell traverses the ROI. In front of the inlet to the ROI the cell starts as an undeformed sphere. As it
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150 µm25 µm0 µm-25 µm-50 µm 275 µm 300 µm 325 µm 350 µm

Figure 3.4: Stresses on the Cell Surface in the ROI: Cells flowing through the narrow channel (indicated by the
dashed lines) from the left to the right. The flow profile is sliced at z = 0 µm and the velocity magnitude is indicated
by the colour. The colouring of the cells is split to show the shear stress (top) and the normal pressure stress (bottom)
for different cell positions along the channel. The pressure stress is normalised by pavg. Cell parameters: r = 5 µm,
E = 1 kPa, ηc = 0.125 Pa s.

approaches the channel inlet, the cell is stretched by the local viscous shear forces so that the cell

enters the channel in an elongated form at x ∼ 0 µm. As the cell proceeds down the channel (and as

the flow becomes fully developed), the cell reaches a stationary bullet-shaped configuration where

the hydrodynamic and bulk cell forces balance out. The cell shape remains constant through its

remaining passage though the narrow channel and the resulting cell shape will be used to derive a

deformation measure called stationary deformation below. At the outlet of the channel (where the

cell is exposed to the outlet flow dynamics), the cell’s downstream profile becomes more oblate.

After the outlet (x > 300 µm) the fluid velocity drops rapidly and the pressure gradient and shear

forces decrease, such that the cell returns again to its undeformed spherical shape.

The stresses acting on the cell surface can be decomposed into normal and tangential shear

components. In Fig. 3.4 we plot the normal pressure and shear stress on the cell surfaces at

different positions in the ROI. The shear stress (indicated in the upper half of the cell) is highest at

the inflow (x = 0 µm). At the end of the narrow channel, the cell reaches a stationary configuration

with a steady cell shape. In this region the shear stress is highest close to the channel wall due to

the high shear rate. To visualise the variation, the pressure of each cell in Fig. 3.4 is normalised by

subtracting the average surface pressure pavg =

∫
Γc

p dA∫
Γc

1 dA
. One can observe that the pressure pushes

the cell from the back and pulls it forward at the front. The pressure difference over the cell is

largest in the elongated state at the inflow.

The complex loading of the hydrodynamic stress on the cell surface depends on the cell posi-
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Figure 3.5: Pressure and Shear Stress on the Cell Contour: a) Average normalised pressure on the cell surface
(solid line) with minimal and maximal pressure (filled area) for r ∈ [3, 5, 7]µm. Insets show the normalised pressure
distribution on the cell contour over the arc angle θ (θ = 0 is the front of the cell, θ = −π in the back) for three different
cell positions x ∈ [0, 250, 300]µm. b) Averaged (solid line), minimum and maximum shear stress (filled area) on the
cell contour. Insets show the shear stress distribution over the arc angle θ. The channel inlet (x = 0 µm) and outlet
(x = 300 µm) is indicated by the grey dashed vertical lines. Cell parameters: E = 1.5 kPa, ηc = 0.125 Pa s.

tion in the ROI. Similar to the stress components shown in Fig. 3.4 on the cell surface, we show

the spatial and temporal distribution of pressure and shear stress on the cell contour in Fig. 3.5.

We plot the average surface stresses for three different radii r ∈ [3, 5, 7]µm over the channel posi-

tion. The shaded area shows the minimum and maximum stresses. One can observe a non-trivial

distribution of stresses, with highest absolute values just in front of the inlet and just behind the

outlet of the narrow channel. Insets show the stress distributions over the cell contour plotted over

the arc angle θ ∈ [0, π]. The pressure is again normalised by the average surface pressure pavg. The

surface pressure magnitude increases in the same manner for all three radii and the pressure over

the cell is constant as soon as the cell reaches a stationary configuration. The absolute pressure

difference across the cell scales with the cell size. After the outlet, the surface pressure drops due

to the widening of the channel. On the other hand, the surface shear stress on the cell surface at the

inlet does not increase in the same manner for all three radii. The shear stress becomes constant

around x ∼ 50 µm after channel entry and the shear stress is higher for bigger cells as these come

closer to the channel wall.
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3.4. Cell Shapes and Cell Deformation

In RT-DC, the cells are imaged with a high-speed camera at a rate of thousands of cells per second.

Imaging takes place at the end of the channel where the cells are expected to reach a stationary

shape. The camera points in the z-direction, such that each image shows a two-dimensional pro-

jection of the cell shape in the xy-plane. These images are used to extract the two-dimensional

cell contour from which several shape measures are computed. The cell contour for a cell flowing

from the left to the right through the ROI is shown in Fig. 3.6a. The cell starts as an undeformed

sphere and gets deformed due to the hydrodynamic stresses on the cell surface as described above.

To extract the apparent Young’s modulus, two correlated measures are needed: the area A

enclosed by the cell contour and the deformation D. The deformation is defined as

D = 1 − circularity = 1 −
2
√
πA

L
, (3.18)

where L is the circumference of the contour (Otto et al., 2015). An undeformed cell has a defor-

mation value of D = 0 and the more the cell shape diverges from a perfect sphere, D increases.

The deformation value of the stationary cell shape at the end of the narrow channel (referred to

as stationary deformation) is independent on the cell viscosity. From each observed area and de-

formation pair, one can conclude a unique Young’s modulus by using a lookup table created by

numerical simulations (Mietke et al., 2015; Mokbel et al., 2017).

Here, we are not only interested in the stationary deformation at the end of the channel but

also the temporal evolution of the deformation over the full ROI. In Fig. 3.6b we plot the deforma-

tion, D, over the ROI for cells with different radii r and Young’s moduli E with a fixed viscosity

ηc = 0.125 Pa s. So far, analytical (see Mietke et al. (2015)) as well as numerical models of such

microfluidic channels (Mokbel et al., 2017; Schuster and Marti, 2021) assumed an axisymmetric

geometry. The axisymmetric assumption might be a good approximation for smaller stationary de-

formed cells and helps to reduce the computational costs but the stresses acting on larger cells are

not rotationally symmetric and the flow profile at the inlet and outlet of the square channel differs

from a cylindrical inflow / outflow funnel. Especially the height of the channel does not change

and is fixed to z = 20 µm. Nevertheless, to compare the behaviour in the cylindrical channel to the

square channel we set up the same system as described above in an axisymmetric geometry. As in
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Figure 3.6: Contours and Deformation Curves for Three Different Young’s Moduli: a) Contours for cells with a
radius r = 5 µm and three different Young’s moduli E ∈ [1, 1.5, 3]kPa. The cell viscosity is fixed to ηc = 0.125 Pa s.
The channel inlet (x = 0 µm) and outlet (x = 300 µm) is indicated by the grey dashed vertical lines. See colour legend
in b). b) Deformation curves for cells with a radius of 3 µm (left), 5 µm (middle) and 7 µm (right). Solid lines show
the deformation of the square channel (3D) simulations, dashed lines the cylindrical (axisymmetric) geometry. The
stationary deformations of the axisymmetric linear bulk material model at the end of the channel from Mokbel et al.
(2017) (derived from (Wittwer et al., 2020)) are indicated with plus signs. This dataset does not contain stationary
deformation values for small cells, e.g. with r = 3 µm.

previous models (Mietke et al., 2015; Mokbel et al., 2017; Schuster and Marti, 2021) we take into

account the equivalent channel radius, i.e. the cylindrical channel diameter is chosen by a factor

1.094 larger than the square channel width, to get the same pressure drop along the channel.

The deformations peak at the channel inlet and relax to a stationary deformation in the narrow

channel in agreement with the experimental observation in (Fregin et al., 2019). Depending on

the cell stiffness, the deformation curve shows a local minimum just after the inlet before reaching

the stationary deformation. At the outlet, the cells start to relax but are compressed due to the

fluid slowing down (see Fig. 3.4), leading to a second peak of the deformation. Experimental

measurements at lower flow rate and higher fluid viscosity did not indicate such a peak at the

outlet (Fregin et al., 2019). Apart from the difference in parameters, this discrepancy might be due

the fact that experimental cells are not yet in a stationary deformation at the end of the channel,

or due to mechanical effects in the considered cell types which are not captured in our numerical

model.

Cells in both virtual geometries, axisymmetric and square channel, show similar behaviour
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Figure 3.7: Deformation Curves for Different Cell Radii, Young’s Moduli and Viscosities: From left to the
right: The cell radius increases with r ∈ [3, 5, 7]µm. Top to bottom: The cells Young’s modulus increases
with E ∈ [1, 1.5, 3]Pa. For each combination of r and E the deformation D for different cell viscosities ηc ∈

[0.03125, 0.0625, 0.125, 0.25, 0.5, 1]Pa s is shown. Solid lines are the square (3D) channel simulations, dashed lines
the axisymmetric cylindrical simulations. The vertical lines indicate the inlet and outlet position.

at the inlet region and in the channel but the relaxation time at the channel outflow differs. The

difference between the stationary deformation in the square and the cylindrical channel becomes

larger for bigger cell radii, pointing at the limitation of the axisymmetric assumption in the previ-

ous works. The peak height and relaxation time to reach the stationary deformation is dependent

on the Young’s modulus. The relaxation back into a sphere takes longer in the square channel. We

cannot simulate the outflow simulation for r = 7 µm and x = 1 kPa as the cell touches the boundary

of Ω f ,0. The linear elastic material model of Mokbel et al. (2017) in the axisymmetric cylindrical

channel predicts a lower stationary deformation for softer cells. For stiffer and / or smaller cells

the cylindrical model assumption is in good agreement.

The temporal evolution is not only dependent on the cell radius r and Young’s modulus E

but also on the cell’s viscosity ηc. Therefore, we ran a larger parameter sweep not only over

17



the radius and Young’s modulus but also the cell viscosity. We start the simulations with the

cells at x = −100 µm in the cylindrical channel and x = −80 µm in the square channel. The

resulting deformation curves are shown in Fig. 3.7 where we set the bulk viscosity to ηc ∈

[0.03125, 0.0625, 0.125, 0.25, 0.5, 1]Pa s which lies in the typically assumed parameter range of

cytosol. For all simulated viscosities the deformation shows a peak at the inflow and outflow. The

height of this peak largely depends on the cell viscosity. After the channel inflow, the deformation

reaches a local minimum before reaching the stationary value for small viscosities. For higher

viscosities this minimum is missing and the cells relax monotonically to the stationary deforma-

tion. For small Young’s moduli, large cells and highly viscous cells, the deformation does not

become stationary within the 300 µm channel. For large and soft cells, the stationary deformation

in the cylindrical channel is lower than the deformation in the square channel. This is due to the

non-symmetric stresses along the flow direction resulting in an unequal deformation of the cell.

The cell’s deformation decreases slightly before the actual channel outflow but then increases due

to the elongation in the y-direction at the outflow. Whereas in the inflow region, the deformation

in the cylindrical and square channel is comparable, the results differ at the outflow, showing an

increased peak height for the cylindrical channel. Also, the relaxation to an undeformed state is

different, which can be mostly explained by the more pronounced velocity drop in the cylindrical

funnel. The relaxation times in the narrow channels are similar for both geometries.

In Fig. 3.8 we fix the radius and plot the deformation evolution for different Young’s moduli

and viscosities. For all viscosities the deformation curves after the outlet start to align even though

the relaxation time in a Kelvin-Voigt model should be unequal. This indicates that the influence of

viscosity in the simulated range is negligible and cell deformation is quasi-stationary, determined

only by the current hydrodynamic stresses, which the cell experiences.

Note, that we simulate the inflow together with the narrow channel and the outflow separately.

Hence, we can only simulate cells in the outflow region which reach a stationary deformation in the

narrow channel. Additionally, if the cell elongates too much in the y-direction at the outflow such

that it touches the boundary of Ω f ,0, the simulation does not reproduce the deformation behaviour

correctly or even crashes. Those limitations are most prominent for large cells with low viscosities

(upper right corner in Fig. 3.7). For large cells, a model as proposed in Mokbel et al. (2018) would
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Figure 3.8: Contours and Deformation Curves for Different Viscosities: a) Contours for cells with a radius
r = 5 µm and three different viscosities ηc ∈ [0.03125, 0.625, 0.125]Pa s. The cell Young’s modulus is fixed to
E = 1.0 kPa. The channel inlet (x = 0 µm) and outlet (x = 300 µm) is indicated by the grey dashed vertical lines. See
colour legend in b). b) Deformation curves for cells with a radius of 5 µm and a Young’s modulus of 1.0 kPa (left),
1.5 kPa (middle) and 3.0 kPa (right). Solid lines show the deformation of the square channel (3D) simulations, dashed
lines the cylindrical (axisymmetric) geometry. The cell with E = 1.0 kPa and ηc = 0.25 Pa s is not stationary in the
narrow channel and thus excluded.

allow for higher deformations at the cost of complexity and increased computational burden.

3.4.1. Deformation of Highly Viscous Cells at the Outflow

The complex stress distribution at the channel inflow renders the task to extract a stress-strain

relationship rather complicated. The outflow of the narrow channel on the other hand is more

interesting: the cells are pre-stressed into a stationary deformation and relax to the undeformed

configuration. Under the assumption that the narrow channel is long enough for even higher

viscosities as presented so far, we simulated the channel outflow with cells up to ηc = 4 Pa s fixing

the cell radius to r = 5 µm and the Young’s modulus to E = 1 kPa. The different deformation

curves for the square channel are shown in Fig. 3.9. Cells with small viscosities show a small local

minimum followed by a larger local maximum already discussed above. But cells with viscosities

of ηc > 1 Pa s do not show this alternation but relax monotonically back into a sphere.

3.4.2. Inertia Ratio and Fourier Transcriptors

Besides the deformation measure defined above, several other ways exist to describe the deformed

cell shapes. Here, we summarise two of those measures, the inertia ratio and Fourier transcriptors,
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Figure 3.9: High Viscosity Outflow Behaviour Deformation values at the outlet (vertical dashed grey line) for cell
viscosities ηc ∈ [0.031250.0625, 0.125, 0.25, 0.5, 1, 2, 4]Pa s in the square channel. The Young’s modulus is fixed to
E = 1 kPa and the radius to r = 5 µm.

and plot them over the channel.

The cell deformation, D, based on the cells circularity does not capture information about

the principal stretches of the deformed cell. This information is described in the ratio of the two

eigenvalues of the moment-of-area tensor, called inertia ratio (Mokbel et al., 2017). In contrast

to the deformation which is evaluated on the detected contour, the inertia ratio is based on two

integrals over the cell area. Thus, being a quantity based on integrals, it is more robust against

noise in the experimental data. Here we use the definition of the inertia ratio that is available in the

standard RT-DC software, dclab (Müller et al., 2015), which for horizontally symmetric shapes is

defined by

I =

√
Iyy

Ixx
, (3.19)

Ixx =

∫
A
(y − yb)2dA, (3.20)

Iyy =

∫
A
(x − xb)2dA, (3.21)

where A is the cell domain and (xb, yb) is the cell barycentre (Herbig et al., 2018). The derivation

of the inertia ratio based on the cell contour data is described in Appendix 3A.

Fig. 3.10 shows the inertia ratio for different radii and viscosities plotted over the channel

position. An inertia ratio of I > 1 indicates a cell elongated along the x-axis, an inertia ratio of

I < 1 an elongation along the y-axis. The inertia ratio is I ≈ 1 if there is no dominant principal
20
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Figure 3.10: Inertia Ratio for different Young’s moduli and cell viscosities: a) Inertia ratio I =
√

Ixx
Iyy

for three
different Young’s moduli E ∈ [1, 1.5, 3]kPa and cell sizes r ∈ [3, 5, 7]µm. The cell viscosity is fixed to ηc = 0.125 Pa s.
Vertical dashed lines indicate channel inlet and outlet. Horizontal dotted lines an inertia ratio of I = 1. b) Inertia ratio
for different viscosities and Young’s moduli. The cell radius is fixed to r = 5 µm.

stretch direction. In contrast to the deformation D, the inertia ratio does not show a local minimum

after the channel entry, and may therefore be better suited to extract cellular relaxation times and

cellular viscosity out of RT-DC measurements, as we will show in Sec. 3.5. At the outflow, the

inertia ratio shows a local minimum when the cells elongate in the y-direction. The downside of

using the inertia ratio to measure the stationary deformation is that it does not depend uniquely on

the Young’s modulus (see Mokbel et al. (2017)). Thus, extracting the apparent Young’s modulus

might not be possible for certain measurements.

To decouple the elongation at the inlet, resulting from the velocity increase in x-direction,

from the bullet shape caused by the shear stresses in the channel, Fregin et al. (2019) proposed to

decompose the cell contour by the discrete Fourier transform (see Appendix 3A). Reconstructing

the contours with only the odd coefficients of the Fourier modes, the new shapes do not exhibit the

elongation because the information about the ellipticity of the cell is stored in the even coefficients

only. Based on the contours reconstructed from either the even or odd coefficients only, we can
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Figure 3.11: Even and Odd Cell Contours from Fourier Decomposition: a) Cell contours reconstructed from the
odd Fourier coefficients for cells with a radius r = 5 µm and three different viscosities ηc ∈ [0.03125, 0.625, 0.125]Pa s.
The channel inlet (x = 0 µm) and outlet (x = 300 µm) is indicated by the grey dashed vertical lines. b) Contours
reconstructed from the even Fourier coefficients for the same parameters. In both cases the contours are reconstructed
with k ≤ 9 Fourier coefficients. See colour legend in c). c) Deformation curves Dodd (solid lines) and Deven (dashed
lines) of the contours reconstructed from the odd and even coefficients only for cells with a radius of 5 µm and a
Young’s modulus of 1.0 kPa (left), 1.5 kPa (middle) and 3.0 kPa (right).

derive the deformation values Deven and Dodd. The resulting contours over the full microfluidic

channel are shown in Fig. 3.11a and Fig. 3.11b, the corresponding deformation curves are depicted

in Fig. 3.11c.

3.5. Extraction of the Cell Viscosity

To extract the cell viscosity from RT-DC measurements, Fregin et al. (2019) introduced the idea to

decouple the shear stress acting on the cell surface into (i) the high shear stress at the inlet due to

the acceleration of the fluid in the direction of the channel and (ii) the lower constant shear stress

within the narrow channel (see also Fig. 3.5b)

Simplifying the complex stress evolution to a constant step stress throughout the narrow chan-

nel reduces the problem to a simple creeping problem. Further assuming the cell to be a Kelvin-

Voigt material and reducing its three-dimensional shape to a simple uniaxial problem, the evolution
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of strain ε(t) is

ε(t) = ε1 + ε2 exp (−t/τ),

where ε1+ε2 is the initial strain (at t = 0), ε1 is the final (relaxed) strain (as t → ∞) and τ =
ηc
E is the

viscoelastic relaxation time. The idea for extraction of the cell viscosity is to fit the above strain

evolution to the experimentally observed evolution of deformation, with the free parameters ε1, ε2

and τ. The parameter τ which provides the best fit is referred to as the apparent relaxation time

τa. Together with the apparent Young’s modulus Ea this allows to extract the apparent viscosity

ηa = Eaτa. In experimental data, the apparent Young’s modulus Ea can be extracted from the

stationary deformation within the narrow channel such that the whole methodology can be applied

to extract the viscosity from experimental data, as proposed by Fregin et al. (2019). The different

deformation measures introduced in the previous section can be used to identify the strain.

Next, we challenge this methodology for the first time by comparing extracted viscosity to the

actual simulated viscosity. As strain measures we use the squared inertia ratio, ε = I2 and the even

and uneven deformations, ε = Deven and ε = Dodd, respectively. We find that the deformation D

itself is not suited for this analysis as it does not monotonically relax after the channel inlet (see

Fig. 3.8). The fitted curves for the different deformation measures are shown in Fig. 3.12a. We

fit the relaxation curve starting at x = 50 µm to exclude the influence from the inlet. Fitting the

curve earlier in the channel does not alter the result significantly. The above approach does work

for higher viscosities which do not reach stationary deformation at the end of the narrow channel.

Thus, here we use the simulated data from the inflow until x = 300 µm which contains simulated

viscosities up to 1 Pa s.

In Fig. 3.12b(left) we depict the actual cell viscosity ηc in comparison to the apparent viscosity

ηa extracted from the three different strain measures, Deven,Dodd and I2. It can be seen that the

viscosity extraction based on the inertia ratio I2 gives a quite accurate approximation, while the

results based on Deven and Dodd deviate significantly from the actual viscosity. Our results show the

limits of viscosity extraction based on Deven and Dodd and finally explain the experimental finding

in Fregin et al. (2019) that viscosity extraction based on Deven led to significantly lower apparent

viscosity than based on Dodd.
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Figure 3.12: Best Curve Fits and Apparent Viscosity: a) (left) Squared inertia ratio I2 (dashed lines) and the
exponential fit (solid lines). The fitted interval is indicated by the circles starting at 50 µm until the end of the channel
at 300 µm. Here, only the inflow simulations are considered. Vertical grey dashed lines indicate the time of entrance
and leaving of the narrow channel. (middle) Deformation Deven reconstructed from the even Fourier coefficients
(dashed lines) and the exponential fit (solid lines). (right) Deformation Dodd reconstructed from the odd Fourier
coefficients (dashed lines) and the exponential fit (solid lines). The cell radius and the Young’s modulus is fixed to
r = 5 µm and E = 1.5 Pa. b) (left) Apparent viscosity from the curve fits in a). The grey dashed line indicates
agreement with the true viscosity of the cell. The radius is fixed to r = 5 µm and the Young’s modulus E = 1.5 kPa
(middle & right) Apparent viscosity over the cell radius and Young’s modulus based on the squared inertia ratio. The
grey dashed lines indicate the true simulated viscosity. The dashed lines are the corrected apparent viscosity values
based on the linear regression (see main text).

To improve the method of viscosity extraction even further, we applied linear regression with

the radius r, the Young’s modulus E and the apparent viscosity ηa as explanatory variables and the

true viscosity η as the response. We obtain

ηa,corrected = −5.49 × 10−3 ∗ r − 1.82 × 10−5 ∗ E + 1.12 ∗ ηa − 0.01,

where ηa is determined based on the inertia ratio, ε = I2 and the radius r is given in µm, the Young’s

modulus E in Pa, and the apparent viscosity ηa in Pa s. The corrected apparent viscosity is shown

in Fig. 3.12b. The linear fit function gives an improved prediction of the actual viscosity with a

coefficient of determination R2 = 0.98. Still, there seems to be a non-linear influence pronounced

especially for E = 3 kPa where the fit even yields negative viscosities.
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We conclude that assuming a simple one-dimensional Kelvin-Voigt material model is too sim-

plified for the complex three-dimensional interplay between the channel geometry, cell defor-

mation and fluid flow. Yet, the approach presented here should be suitable to estimate cellular

viscosity from the evolution of the inertia ratio after channel entry. This improves the results from

Fregin et al. (2019) to a rigorous model-based approach for extraction of cellular viscosity from

RT-DC measurements.

3.6. Approximation Error of the Cell Volume over the Channel

The volume of a cell in an RT-DC measurement is approximated by assuming a rotational sym-

metry of the cell along the x-axis. In our simulations, the cell shape and thus contours are convex

and symmetrical to the x-axis. Under the assumption of axisymmetry an approximation to the cell

volume can be obtained by rotating the two-dimensional cell contour which would be seen on a

camera image. Considering only the upper (or lower) part of the contour given by the polygon of

points (x̄i, ȳi) for i = 0, . . . , N
2 − 1, centred around the barycentre of the contour (see above) the

rotational approximation of the volume can be computed by e.g. the trapezoidal rule:

Vrot = π

∫
y2dx ≈ π

N
2 −1∑
i=1

ȳ2
i−1 + ȳ2

i

2
∆x̄i,

where ∆x̄i = x̄i − x̄i−1.

We define V0 to be the (initial) volume of the cell, which is constant in time for an incom-

pressible impermeable cell and plot the relative volume difference ∆V = Vrot−V0
V0

over the channel in

Fig. 3.13. The approximated volume Vrot is in good agreement for all three radii in the stationary

state. For the cell with a Young’s modulus of E = 1 kPa and a radius of r = 7 µm, the volume ap-

proximation of the stationary deformed cell is off by -1.6%. For all the other combinations shown

here the approximation of the volume from the stationary deformed cell is below 0.5% (absolute

value). At the inflow and outflow the rotational symmetry assumption does not hold, and we find

large errors in the approximated volume. These errors increase with decreasing cell stiffness. For

E = 1kPa the cells are underestimated up to -27.2% at the inflow and overestimated up to 26.6%

at the outflow. Accordingly, it is important to approximate the cells volume only in regions where

the cell shapes can be assumed axisymmetric.
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Figure 3.13: Relative Volume Error over the Channel: The relative error is derived by Vrot−V0
V0

where V0 is the actual
cell volume and Vrot its approximation by rotation of the cell contour projected in the x-y plane. The relative volume
difference is in the range of [-27.2, 26.2]%. The dotted lines are the relative volume changes of the incompressible
cells in the numerical simulations.

To validate our numerical model we plot the actual relative volume change of the simulated

incompressible cells in Fig. 3.13, too. The maximum error is below 0.32% for all configurations

and is thus nicely conserved.
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3.7. Conclusions

We performed the first three dimensional simulations of a cell traversing an RT-DC channel to

obtain a better understanding of the complex interplay of transient hydrodynamics, cellular defor-

mation and cell mechanical parameters. Based on the shear thinning rheology of the surrounding

fluid, we looked at time-dependent behaviour of the cell which we assumed to be a viscoelastic

Kelvin-Voigt bulk material. We find peak stresses at the inlet and outlet resulting in a peak cellular

deformation whose size depends largely on the cell viscosity and elasticity. For high viscosities,

the outlet peak is not present and the cells relax monotonically. As viscous cells with a viscosity of

ηc ≥ 1 Pa s do not reach stationary deformation within the narrow channel, the apparent Young’s

modulus can not be easily extracted in RT-DC measurements.

We compare with the 2D axisymmetric simulations similar to Schuster and Marti (2021) and

found good agreement at the inlet with our full three dimensional model. The stationary deforma-

tion agrees for small and stiff (and thus less deforming) cells, too. Only for soft and bigger cells,

the axisymmetric assumption does not hold any more and the square channel geometry needs to

be taken into account. At the outlet, the influence of the square channel geometry does show a

bigger influence on the deformation evolution and relaxation time.

Based on different deformation measures we extract the resulting apparent cell viscosity and

find that the real viscosity is quite well recovered from the relaxation time of the inertia ratio. This

significantly improves the results from Fregin et al. (2019) to a rigorous model-based approach for

extraction of cellular viscosity from RT-DC measurements.

We conclude our virtual RT-DC analysis by looking at the approximated volume difference

depending on the region in the RT-DC channel. This shows the limitation of axisymmetric ap-

proximations for those kind of simulations. With our simulation results, a more precise evaluation

of RT-DC measurements is now possible, leading to more profound extraction of cell mechanical

parameters from RT-DC measurements.
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Appendix 3A. Derivation of the Deformation Measure from Cell Contours

All the deformation measures need to be derived from the images taken of the cells by the high-

speed camera of the RT-DC setup. The resulting contours are given as a closed polygon with N

points (x0, y0), . . . , (xN−1, yN−1) where (x0, y0) = (xN−1, yN−1).

For the deformation based on the circularity of the cell D := 1 − 2
√
πA

L (see (Otto et al., 2015))

we need the circumference L and the area A of the cell contour. Those quantities can be derived

by

L =

N−1∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2, (3A.1)

A =
1
2

N−1∑
i=0

(xiyi+1 − xi+1yi) . (3A.2)

For the following deformation measure and the Fourier shape analysis, the cell contours need to

be centred around their barycentre (xb, yb). The barycentre can be calculated by (xb, yb) =
(

Ix
A ,

Iy

A

)
where Ix =

∫
A

xdA and Iy =
∫

A
ydA are the integrals over the area enclosed by the polygon (Mokbel

et al., 2017; Fregin et al., 2019):

Ix =
1
6

N−1∑
i=0

(xiyi+1 − xi+1yi) (xi + xi+1) , (3A.3)

Iy =
1
6

N−1∑
i=0

(xiyi+1 − xi+1yi) (yi + yi+1) . (3A.4)

We then define the centred cell contour as (x̄i, ȳi) = (xi − xb, yi − yb) for i = 0, . . . ,N − 1.

The inertia ratio – the ratio between the eigenvalues of the moment-of-area tensor – is defined

by I =

√
Iyy

Ixx
with Ixx =

∫
A

ȳ2dA and Iyy =
∫

A
x̄2dA if the cell contour is horizontally symmetric

(Herbig et al., 2018). In this case, double integrals Ixx and Iyy can be derived by

Ixx =
1

12

N−1∑
i=0

(x̄iȳi+1 − x̄i+1ȳi)
(
ȳ2

i + ȳiȳi+1 + ȳ2
i+1

)
, (3A.5)

Iyy =
1

12

N−1∑
i=0

(x̄iȳi+1 − x̄i+1ȳi)
(
x̄2

i + x̄i x̄i+1 + x̄2
i+1

)
. (3A.6)
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Fourier Shape Descriptors

Similar to the inertia ratio, we derive the Fourier coefficients from the closed polygon (x̄i, ȳi) for

i = 0 . . .N centred around the cell barycentre (Fregin et al., 2019). First, we convert the contour

into a sinusoidal signal by converting the contour points (x̄i, ȳi) into polar coordinates (ri, ϕi) with

ri =

√
x̄2

i + ȳ2
i and ϕi = arctan2(x̄i, ȳi) for i = 0 . . .N. The new function r(ϕ) is sinusoidal and can

be extended indefinitely. We linearly interpolate r(ϕ) and resample the signal equidistantly over

ϕ̄ ∈ [−π, π] with ∆ϕ̄ = 2π
N̄−1 where N̄ is the number of sample points to get r̄(ϕ̄).

The Fourier coefficients ak and bk can then be derived by

ak =
∆ϕ̄

π

N̄−1∑
i=0

r̄i cos(kϕ̄i) k ≥ 0, (3A.7)

bk =
∆ϕ̄

π

N̄−1∑
i=0

r̄i sin(kϕ̄i) k > 0. (3A.8)

The coefficients ak hold information about the size (a0), the eccentricity (a1), and ellipticity (a2)

of the cell contour, and higher order shape modes for k > 3 (Fregin et al., 2019). The coefficients

bk contain information about the angular orientation of the cell. Based on those coefficients, the

contour r̃(ϕ̃)even and r̃(ϕ̃)odd can be obtained by applying the inverse discrete Fourier transform:

r̃(ϕ̃i)even =
a0

2
+

k∑
k=1

(a2k cos (2kϕ̃i) + a2k sin (2kϕ̃i)) , (3A.9)

r̃(ϕ̃i)odd =
a0

2
+

k∑
k=0

(a2k+1 cos ((2k + 1)ϕ̃i) + a2k+1 sin ((2k + 1)ϕ̃i)) , (3A.10)

where we set ϕ̃i = ϕi. Here, we use only the first ten Fourier descriptors as in (Fregin et al., 2019)

to reconstruct the contours.
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